85 research outputs found

    Enhanced Immunomodulation in Inflammatory Environments Favors Human Cardiac Mesenchymal Stromal-Like Cells for Allogeneic Cell Therapies

    Get PDF
    Rising numbers of patients with cardiovascular diseases and limited availability of donor hearts require new and improved therapy strategies. Human atrial appendage-derived cells (hAACs) are promising candidates for an allogeneic cell-based treatment. In this study, we evaluated their inductive and modulatory capacity regarding immune responses and underlying key mechanisms in vitro. For this, cryopreserved hAACs were either cultured in the presence of interferon-gamma (IFNγ) or left unstimulated. The expression of characteristic mesenchymal stromal cell markers (CD29, CD44, CD73, CD105, CD166) was revealed by flow cytometry that also highlighted a predominant negativity for CD90. A low immunogeneic phenotype in an inflammatory milieu was shown by lacking expression of co-stimulatory molecules and upregulation of the inhibitory ligands PD-L1 and PD-L2, despite de novo expression of HLA-DR. Co-cultures of hAACs with allogeneic peripheral blood mononuclear cells, proved their low immunogeneic state by absence of induced T cell proliferation and activation. Additionally, elevated levels of IL-1β, IL-33, and IL-10 were detectable in those cell culture supernatants. Furthermore, the immunomodulatory potential of hAACs was assessed in co-cultures with αCD3/αCD28-activated peripheral blood mononuclear cells. Here, a strong inhibition of T cell proliferation and reduction of pro-inflammatory cytokines (IFNγ, TNFα, TNFβ, IL-17A, IL-2) were observable after pre-stimulation of hAACs with IFNγ. Transwell experiments confirmed that mostly soluble factors are responsible for these suppressive effects. We were able to identify indolamin-2,3-dioxygenase (IDO) as a potential key player through a genome-wide gene expression analysis and could demonstrate its involvement in the observed immunological responses. While the application of blocking antibodies against both PD-1 ligands did not affect the immunomodulation by hAACs, 1-methyl-L-tryptophan as specific inhibitor of IDO was able to restore proliferation and to lower apoptosis of T cells. In conclusion, hAACs represent a cardiac-derived mesenchymal stromal-like cell type with a high potential for the application in an allogeneic setting, since they do not trigger T cell responses and even increase their immunomodulatory potential in inflammatory environments

    On the logarithmic probability that a random integral ideal is A\mathscr A-free

    Full text link
    This extends a theorem of Davenport and Erd\"os on sequences of rational integers to sequences of integral ideals in arbitrary number fields KK. More precisely, we introduce a logarithmic density for sets of integral ideals in KK and provide a formula for the logarithmic density of the set of so-called A\mathscr A-free ideals, i.e. integral ideals that are not multiples of any ideal from a fixed set A\mathscr A.Comment: 9 pages, to appear in S. Ferenczi, J. Ku{\l}aga-Przymus and M. Lema\'nczyk (eds.), Chowla's conjecture: from the Liouville function to the M\"obius function, Lecture Notes in Math., Springe

    Cardiac Extracellular Vesicles (EVs) Released in the Presence or Absence of Inflammatory Cues Support Angiogenesis in Different Manners

    Get PDF
    Cells release extracellular vesicles (EVs) to communicate in a paracrine manner with other cells, and thereby influence processes, such as angiogenesis. The conditioned medium of human cardiac-derived adherent proliferating (CardAP) cells was recently shown to enhance angiogenesis. To elucidate whether their released EVs are involved, we isolated them by differential centrifugation from the conditioned medium derived either in the presence or absence of a pro-inflammatory cytokine cocktail. Murine recipient cells internalized CardAP-EVs as determined by an intracellular detection of human proteins, such as CD63, by a novel flow cytometry method for studying EV-cell interaction. Moreover, endothelial cells treated for 24 h with either unstimulated or cytokine stimulated CardAP-EVs exhibited a higher tube formation capability on Matrigel. Interestingly, unstimulated CardAP-EVs caused endothelial cells to release significantly more vascular endothelial growth factor and interleukin (IL)-6, while cytokine stimulated CardAP-EVs significantly enhanced the release of IL-6 and IL-8. By nCounter® miRNA expression assay (NanoString Technologies) we identified microRNA 302d-3p to be enhanced in unstimulated CardAP-EVs compared to their cytokine stimulated counterparts, which was verified by quantitative polymerase chain reaction. This study demonstrates that both CardAP-EVs are pro-angiogenic by inducing different factors from endothelial cells. This would allow to select potent targets for a safe and efficient therapeutic application

    Hyaluronic Acid Influence on Normal and Osteoarthritic Tissue-Engineered Cartilage

    Get PDF
    The aim of this study is to identify gene expression profiles associated with hyaluronic acid (HA) treatment of normal and osteoarthritis (OA)-like tissue- engineered cartilage. 3D cartilage micromasses were treated with tumour necrosis factor-α (TNF-α) (OA-inducer) and/or HA for 7 days. Viability was examined by PI/FDA staining. To document extracellular matrix (ECM) formation, glycosaminoglycans (GAG) were stained with Safranin-O and cartilage-specific type II collagen was detected immunohistochemically. Genome-wide gene expression was determined using microarray analysis. Normal and OA-like micromasses remained vital and showed a spherical morphology and homogenous cell distribution regardless of the treatment. There was no distinct difference in immunolabeling for type II collagen. Safranin-O staining demonstrated a typical depletion of GAG in TNF-α-treated micromasses (−73%), although the extent was limited in the presence of HA (−39%). The microarray data showed that HA can influence the cartilage metabolism via upregulation of TIMP3 in OA-like condition. The upregulation of VEGFA and ANKRD37 genes implies a supportive role of HA in cartilage maturation and survival. The results of this study validate the feasibility of the in vitro OA model for the investigation of HA. On the cellular level, no inhibiting or activating effect of HA was shown. Microarray data demonstrated a minor impact of HA on gene expression level

    Development of a High-Throughput Screening Assay Based on the 3-Dimensional Pannus Model for Rheumatoid Arthritis

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The 3-dimensional (3-D) pannus model for rheumatoid arthritis (RA) is based on the interactive co-culture of cartilage and synovial fibroblasts (SFs). Besides the investigation of the pathogenesis of RA, it can be used to analyze the active profiles of antirheumatic pharmaceuticals and other bioactive substances under in vitro conditions. For a potential application in the industrial drug-screening process as a transitional step between 2-dimensional (2-D) cell-based assays and in vivo animal studies, the pannus model was developed into an in vitro high-throughput screening (HTS) assay. Using the CyBi™-Disk workstation for parallel liquid handling, the main cell culture steps of cell seeding and cultivation were automated. Chondrocytes were isolated from articular cartilage and seeded directly into 96-well microplates in high-density pellets to ensure formation of cartilage-specific extracellular matrix (ECM). Cell seeding was performed automatically and manually to compare both processes regarding accuracy, reproducibility, consistency, and handling time. For automated cultivation of the chondrocyte pellet cultures, a sequential program was developed using the CyBio Control software to minimize shear forces and handling time. After 14 days of cultivation, the pannus model was completed by coating the cartilage pellets with a layer of human SFs. The effects due to automation in comparison to manual handling were analyzed by optical analysis of the pellets, histological and immunohistochemical staining, and real-time PCR. Automation of this in vitro model was successfully achieved and resulted in an improved quality of the generated pannus cultures by enhancing the formation of cartilage-specific ECM. In addition, automated cell seeding and media exchange increased the efficiency due to a reduction of labor intensity and handling time. (Journal of Biomolecular Screening 2007:956-965)BMBF, 0313604A, Verbundprojekt: Evaluierung eines interagierenden 3D Testsystems als Krankheitsmodell der rheumatoiden Arthritis (in vitro Pannus Modell) zur effektiven Prüfung von Wirkstoffen, Teilprojekt 1BMBF, 0313604B, Verbundprojekt: Entwicklung eines interagierenden 3D Testsystems als Krankheitsmodell der rheumatoiden Arthritis (in vitro Pannus Modell) zur effektiven Prüfung von Wirkstoffen, Teilprojekt

    Extracellular vesicles from regenerative human cardiac cells act as potent immune modulators by priming monocytes

    Get PDF
    Background: Nano-sized vesicles, so called extracellular vesicles (EVs), from regenerative cardiac cells represent a promising new therapeutic approach to treat cardiovascular diseases. However, it is not yet sufficiently understood how cardiac-derived EVs facilitate their protective effects. Therefore, we investigated the immune modulating capabilities of EVs from human cardiac-derived adherent proliferating (CardAP) cells, which are a unique cell type with proven cardioprotective features. Results: Differential centrifugation was used to isolate EVs from conditioned medium of unstimulated or cytokinestimulated (IFNγ, TNFα, IL-1β) CardAP cells. The derived EVs exhibited typical EV-enriched proteins, such as tetraspanins, and diameters mostly of exosomes (< 100 nm). The cytokine stimulation caused CardAP cells to release smaller EVs with a lower integrin ß1 surface expression, while the concentration between both CardAP-EV variants was unaffected. An exposure of either CardAP-EV variant to unstimulated human peripheral blood mononuclear cells (PBMCs) did not induce any T cell proliferation, which indicates a general low immunogenicity. In order to evaluate immune modulating properties, PBMC cultures were stimulated with either Phytohemagglutin or anti-CD3. The treatment of those PBMC cultures with either CardAP-EV variant led to a significant reduction of T cell proliferation, pro-inflammatory cytokine release (IFNγ, TNFα) and increased levels of active TGFβ. Further investigations identified CD14+ cells as major recipient cell subset of CardAP–EVs. This interaction caused a significant lower surface expression of HLA-DR, CD86, and increased expression levels of CD206 and PD-L1. Additionally, EV-primed CD14+ cells released significantly more IL-1RA. Notably, CardAP-EVs failed to modulate anti-CD3 triggered T cell proliferation and pro-inflammatory cytokine release in monocultures of purified CD3+ T cells. Subsequently, the immunosuppressive feature of CardAPEVs was restored when anti-CD3 stimulated purified CD3+ T cells were co-cultured with EV-primed CD14+ cells. Beside attenuated T cell proliferation, those cultures also exhibited a significant increased proportion of regulatory T cells. Conclusions: CardAP-EVs have useful characteristics that could contribute to enhanced regeneration in damaged cardiac tissue by limiting unwanted inflammatory processes. It was shown that the priming of CD14+ immune cells by CardAP-EVs towards a regulatory type is an essential step to attenuate significantly T cell proliferation and proinflammatory cytokine release in vitro

    Quality assessment of surgical disc samples discriminates human annulus fibrosus and nucleus pulposus on tissue and molecular level

    Get PDF
    A discrimination of the highly specialised annulus fibrosus (AF) and nucleus pulposus (NP) cells in the mature human intervertebral disc (IVD) is thus far still not possible in a reliable way. The aim of this study was to identify molecular markers that distinguish AF and NP cells in human disc tissue using microarray analysis as a screening tool. AF and NP samples were obtained from 28 cervical discs. First, all samples underwent quality sorting using two novel scoring systems for small-sized disc tissue samples including macroscopic, haptic and histological evaluation. Subsequently, samples with clear disc characteristics of either AF or NP that were free from impurities of foreign tissue (IVD score) and with low signs of disc degeneration on cellular level (DD score) were selected for GeneChip analysis (HGU1332P). The 11 AF and 9 NP samples showed distinctly different genome-wide transcriptomes. The majority of differentially expressed genes (DEGs) could be specifically assigned to the AF, whereas no DEG was exclusively expressed in the NP. Nevertheless, we identified 11 novel marker genes that clearly distinguished AF and NP, as confirmed by quantitative gene expression analysis. The novel established scoring systems and molecular markers showed the identity of AF and NP in disc starting material and are thus of great importance in the quality assurance of cell-based therapeutics in regenerative treatment of disc degeneration

    Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results

    Get PDF
    Autologous chondrocyte implantation (ACI) is an effective clinical procedure for the regeneration of articular cartilage defects. BioSeed®-C is a second-generation ACI tissue engineering cartilage graft that is based on autologous chondrocytes embedded in a three-dimensional bioresorbable two-component gel-polymer scaffold. In the present prospective study, we evaluated the short-term to mid-term efficacy of BioSeed-C for the arthrotomic and arthroscopic treatment of posttraumatic and degenerative cartilage defects in a group of patients suffering from chronic posttraumatic and/or degenerative cartilage lesions of the knee. Clinical outcome was assessed in 40 patients with a 2-year clinical follow-up before implantation and at 3, 6, 12, and 24 months after implantation by using the modified Cincinnati Knee Rating System, the Lysholm score, the Knee injury and Osteoarthritis Outcome Score, and the current health assessment form (SF-36) of the International Knee Documentation Committee, as well as histological analysis of second-look biopsies. Significant improvement (p < 0.05) in the evaluated scores was observed at 1 and/or 2 years after implantation of BioSeed-C, and histological staining of the biopsies showed good integration of the graft and formation of a cartilaginous repair tissue. The Knee injury and Osteoarthritis Outcome Score showed significant improvement in the subclasses pain, other symptoms, and knee-related quality of life 2 years after implantation of BioSeed-C in focal osteoarthritic defects. The results suggest that implanting BioSeed-C is an effective treatment option for the regeneration of posttraumatic and/or osteoarthritic defects of the knee
    corecore